Definite Signature Conformal Holonomy: A Complete Classification
نویسنده
چکیده
This paper aims to classify the holonomy of the conformal Tractor connection, and relate these holonomies to the geometry of the underlying manifold. The conformally Einstein case is dealt with through the construction of metric cones, whose Riemannian holonomy is the same as the Tractor holonomy of the underlying manifold. Direct calculations in the Ricci-flat case and an important decomposition theorem complete the classification for definitive signature.
منابع مشابه
Conformal holonomy, symmetric spaces, and skew symmetric torsion
We consider the question: can the isotropy representation of an irreducible pseudoRiemannian symmetric space be realized as a conformal holonomy group? Using recent results of Čap, Gover and Hammerl, we study the representations of SO(2, 1), PSU(2, 1) and PSp(2, 1) as isotropy groups of irreducible symmetric spaces of signature (3, 2), (4, 4) and (6, 8), respectively, describing the geometry in...
متن کاملA REMARK ON CONFORMAL SU(p, q)-HOLONOMY
If the conformal holonomy group Hol(T) of a simply connected space with conformal structure of signature (2p−1, 2q−1) is reduced to U(p, q) then the conformal holonomy is already contained in the special unitary group SU(p, q). We present two different proofs of this statement, one using conformal tractor calculus and an alternative proof using Sparling’s characterisation of Fefferman metrics.
متن کاملEssential Parabolic Structures and Their Infinitesimal Automorphisms
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generali...
متن کاملThe conformal analog of Calabi-Yau manifolds
This survey intends to introduce the reader to holonomy theory of Cartan connections. Special attention is given to the normal conformal Cartan connection, uniquely defined for a class of conformally equivalent metrics, and to its holonomy group the ’conformal holonomy group’. We explain the relation between conformal holonomy group and existence of Einstein metrics in the conformal class as we...
متن کاملConformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds
The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...
متن کامل